Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 10(3): 494-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467800

RESUMO

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Peptídeos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
2.
Environ Sci Pollut Res Int ; 30(26): 68732-68742, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37131002

RESUMO

The replacement of long-chained per- and polyfluoroalkyl substances (PFAS) with their short-chained homologues may have an impact on the accumulation in plants. The extent to which PFAS are absorbed by plants may differ among species and may depend on environmental factors, including temperature. The effect of an increased temperature on root uptake and translocation of PFAS in plants has been poorly studied. In addition, very few studies have examined toxicity of environmentally realistic PFAS concentrations to plants. Here, we investigated the bioaccumulation and tissue-distribution of fifteen PFAS in Arabidopsis thaliana L. grown in vitro at two different temperatures. Additionally, we examined the combined effects of temperature and PFAS accumulation on plant growth. Short-chained PFAS mainly accumulated in the leaves. The perfluorocarboxylic acid (PFCA) concentrations in roots and leaves, and the relative contribution of PFCAs to the ΣPFAS concentrations increased with carbon chain length regardless of temperature, with the exception of perfluorobutanoic acid (PFBA). An increased uptake of PFAS in leaves and roots at higher temperatures was observed for PFAS containing either eight or nine carbon atoms and could hence potentially result in higher risks for human intake. Leaf:root ratios of PFCAs followed a U-shaped pattern with carbon chain length, which is attributed to both hydrophobicity and anion exchange. Overall, no combined effects of realistic PFAS concentrations and temperature on the growth of A. thaliana were observed. PFAS exposure positively affected early root growth rates and root hair lengths, indicating a potential effect on factors involved in root hair morphogenesis. However, this effect on root growth rate became negligible later on in the exposure, and solely a temperature effect was observed after 6 days. Temperature also affected the leaf surface area. The underlying mechanisms on how PFAS stimulates root hair growth require further examination.


Assuntos
Ácidos Alcanossulfônicos , Arabidopsis , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Temperatura , Plantas , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Carbono , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade
3.
Plant Signal Behav ; 17(1): 2104002, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36000477

RESUMO

Over the years, many different growth media have been used to grow Arabidopsis thaliana in vitro in petri dishes. For these media the nutrient composition may vary, sugars may or may not be added, the medium may or may not be buffered and there is a choice between different gelling agents. The magnitude of possible combinations of these variables obstructs easy comparison of seedling phenotypes grown on the different media. This is especially obvious when it concerns the study of root hairs that are extremely sensitive to changes in their environment. To demonstrate this effect, we have grown Arabidopsis thaliana wild-type seeds on 18 different combinations of growth media and quantified root hair development. Comparison of root hair length and the respective root hair profiles identified the media that result in the formation of the longest root hairs. On these favored media they elongate through tip growth at a constant growth rate until they reach their final length (around 0.6 mm) at a distance of ±4 mm from the root tip.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fenótipo , Raízes de Plantas , Plântula
4.
J Exp Bot ; 71(8): 2412-2427, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31993645

RESUMO

The main functions of plant roots are water and nutrient uptake, soil anchorage, and interaction with soil-living biota. Root hairs, single cell tubular extensions of root epidermal cells, facilitate or enhance these functions by drastically enlarging the absorptive surface. Root hair development is constantly adapted to changes in the root's surroundings, allowing for optimization of root functionality in heterogeneous soil environments. The underlying molecular pathway is the result of a complex interplay between position-dependent signalling and feedback loops. Phytohormone signalling interconnects this root hair signalling cascade with biotic and abiotic changes in the rhizosphere, enabling dynamic hormone-driven changes in root hair growth, density, length, and morphology. This review critically discusses the influence of the major plant hormones on root hair development, and how changes in rhizosphere properties impact on the latter.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Organogênese Vegetal , Reguladores de Crescimento de Plantas , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...